Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 40(2): 151-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27158236

RESUMO

BACKGROUND: Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. METHODS: In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. RESULTS: A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR-520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. CONCLUSION: These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.

2.
Biochem Pharmacol ; 83(7): 893-902, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22234331

RESUMO

Ginsenosides are considered the major constituents that are responsible for most of the pharmacological actions of ginseng. However, some ginsenosides exist as stereoisomeric pairs, detailed and molecular exposition based on the structural differences of ginsenoside stereoisomers has not been emphasized in most studies. Here we explore the functional differences of ginsenoside Rg3 stereoisomers on angiogenesis. In this study, we demonstrated the distinctive differential angiogenic activities of 20(S)-Rg3 and 20(R)-Rg3 stereoisomers. 20(S)-Rg3 at micromolar concentration promotes human endothelial cells proliferation, migration and tube formation in vitro, as well as ex vivo endothelial sprouting. The effects induced by 20(S)-Rg3 are significantly more potent than 20(R)-Rg3. These effects are partially mediated through the activation of AKT/ERK-eNOS signaling pathways. Moreover, knockdown of peroxisome proliferator-activated receptor-gamma (PPARγ) by specific small interference RNA abolished the 20(S)-Rg3-induced angiogenesis, indicating that PPARγ is responsible for mediating the angiogenic activity of Rg3. Using reporter gene assay, the PPARγ agonist activity of 20(S)-Rg3 has been found 10-fold higher than that of 20(R)-Rg3. Computer modeling also revealed the differential binding is due to the chiral center of 20(S)-Rg3 can form a critical hydrogen bond with Tyr473 of PPARγ ligand binding domain. The present study elucidated the differential angiogenic effects of Rg3 stereoisomers by acting as agonist of PPARγ. The results shed light on the structural difference between two ginsenoside stereoisomers that can lead to significant differential physiological outcomes which should be carefully considered in the future development of ginsenoside-based therapeutics.


Assuntos
Indutores da Angiogênese/farmacologia , Ginsenosídeos/farmacologia , PPAR gama/metabolismo , Indutores da Angiogênese/química , Western Blotting , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Genes Reporter , Ginsenosídeos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Estrutura Molecular , PPAR gama/genética , RNA Interferente Pequeno/genética , Estereoisomerismo , Relação Estrutura-Atividade , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...